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Abstract—Inspecting X-ray images is an essential aspect of 
medical diagnosis. However, due to an X-ray’s low contrast and 
low dynamic range, important aspects such as organs, bones, and 
nodules become difficult to identify. Hence, contrast adjustment 
is critical, especially in view of its ability to enhance the details in 
both bright and dark regions. For X-ray image enhancement, we 
therefore propose a new concept based on component attenuation. 
Notably, we assumed an X-ray image could be decomposed into 
tissue components and important details. Since tissues may not 
be the major primary of an X-ray, we proposed enhancing the 
visual contrast by adaptive tissue attenuation and dynamic range 
stretching. Via component decomposition and tissue attenuation, 
a parametric adjustment model was deduced to generate many 
enhanced images at once. Finally, an ensemble framework was 
proposed for fusing these enhanced images and producing a high-
contrast output in both bright and dark regions. We have used 
measurement metrics to evaluate our system and achieved 
promising scores in each. An online testing system was also built 
for subjective evaluation. Moreover, we applied our system to an 
X-ray dataset provided by the Japanese Society of Radiological 
Technology to help with nodule detection. The experimental 
results of which demonstrated the effectiveness of our method.  

Keywords—X-ray Image Enhancement; Component Attenuation; 
Ensemble Framework; Parametric Contrast Adjustment Model  

I.  INTRODUCTION  

 Inspecting X-ray images is an important step for medical 
diagnosis. However, low contrast and low dynamic range of an 
X-ray image make these body parts embedded in the bright or 
dark regions difficult to identify. The bright regions of an X-
ray image are of interest because many important organs and 
bones are located here. In contrast, tiny but significant details, 
such as nodules usually appear in the dark regions. To identify 
organs and nodules simultaneously, a higher dynamic range is 
needed to clearly characterize both the bright and dark regions. 
Without enhancement, it is challenging to show details in a 
standard and low-dynamic-range (LDR) X-ray image.  

Examples of X-ray images offered by a local hospital are 
shown in Fig. 1. The low contrast and the low dynamic range 
of these images make it hard to see the details and to make a 
correct diagnosis. To help with this, we propose an ensemble 
framework, which consists of tissue attenuation, contrast 
adjustment, and image fusion, for X-ray image enhancement. 
By increasing the contrast in bright regions and dark regions, 
our system aims to clearly present the details in LDR X-ray 
images apparently.  

As we will discuss in Section II, many previous methods 
have been proposed to enhance an image’s contrast, such as 
global tone mapping [1], local adaptive tone mapping [2-4], 
Retinex-based methods [5-8], and transform-based methods 
[10]. These works are closely related to tone mapping that 

reduces the dynamic range of an HDR image and produces a 
contrast-enhanced LDR image. Similarly, our proposed method 
also relies on the concept of tone mapping to increase the local 
contrast. However, compared with the previous works, there 
are several differences in the design methodology. Below, we 
summarize the differences and contributions of our method. 

  
Fig. 1. Two typical X-ray images in our testing dataset. The images have low 
dynamic ranges. Their bright and dark regions also show low contrast. 
 

A different way to enhance an X-ray image is presented in 
this paper. Instead of merely applying tone mapping, we 
anticipate more properties can be designed for X-ray image 
enhancement. First of all, component attenuation is proposed in 
our image contrast enhancement model. We know that the 
human body is made up of varying amounts of different tissue 
in different regions. Hence, we may assume that the intensity 
of the acquired image is based on tissue composition and other 
important details. However, too much tissue may make an 
acquired image become overly bright or foggy. Since tissue 
may not be the primary focus of an X-ray image, the visual 
contrast of image details could be greatly enhanced by tissue 
attenuation followed by dynamic range stretching. Thus, we 
propose designing an image processing method to enhance 
images by reducing some amounts of tissue components from 
images.  

In our method, the extraction of maximum removable tissue 
components for enhancement was formulated as a contrast 
maximization problem. Later on, our system generated some 
enhanced images with different degrees of visualization by 
adjusting the level of tissue attenuation and stretching the 
contrast. Specifically, to generate these enhanced images, we 
formulated a parametric contrast adjustment model based on 
the concept of component attenuation. By inputting selected 
attenuation factors into the parametric adjustment model, the 
proposed system can efficiently generate enhanced images. 
Finally, we adopted an ensemble strategy to integrate many 
enhanced images. By determining suitable weights for image 
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fusion, our ensemble framework is able to produce a final 
result with high contrast.  

To the best of our knowledge, few works have ever applied 
component attenuation to X-ray image enhancement. In some 
sense, we might relate the proposed work to “dehazing” 
algorithms [9]. If the removable components are treated as the 
“haze” that reduces the contrast of an X-ray image, we can 
expect to have better visualization after component attenuation. 
Even so, the design of our method is entirely different from 
dehazing methods. For instance, instead of removing all haze, 
our enhancement model focuses on partially removing tissue 
components. In fact, the concept of component attenuation was 
initially proposed by Huang et al. [10], which is the early 
version of the current work. Even though the experimental 
results have demonstrated the effectiveness of the method [10] 
for enhancement, the brightness of the output image is reduced. 
For the bright regions of an X-ray image, the side effect might 
be negligible. However, the phenomenon makes dark regions 
darker and decreases the discriminability for X-ray inspection. 
To solve the problem, in this work, we propose a more general 
enhancement model. The model was designed to be capable of 
stretching the contrast in both bright and dark regions. While 
designing the adjustment model, we introduced a constraint for 
brightness consistency in order to preserve the local brightness 
of the original X-ray image. Furthermore, in Section III, we 
would show that the model used in [10] is a special case of our 
new model. 

The rest of this paper is organized as follows. A survey and 
a summary of related works are introduced in Section II. In 
Section III, we derive the new image contrast enhancement 
model based on component attenuation and analyze its function 
related to enhancing X-ray images. In Section IV, we then 
parametrize the enhancement model and explain the function of 
each model parameter. Next, via the parametric enhancement 
model, in Section V, we illustrate the proposed ensemble 
framework for X-ray enhancement. At the end of this section, 
we also summarize the implementation steps of our system in 
Algorithm 1 to offer a clear system overview. The discussions 
and experimental results are given in section VI. In section VII, 
we conclude this paper. As a supplement, we also summarize 
the mathematical symbols used in the paper in Appendix A. 
Appendix B and Appendix C include some deduction details of 
the proposed method.  

II. RELATIVE METHODS 

Many image enhancement methods have been proposed for 
improving image contrast and details. The global tone mapping 
methods follow a mapping function to transfer input intensity 
values into new values while enlarging the global contrast, yet 
a typical drawback is that image details may be sacrificed. In 
contrast, local adaptive tone mapping methods follow spatially 
varying transfer functions to enhance contrast details [3-4]. 
However, the results might produce undesirable block effects. 
Thus, maintaining spatial consistency after enhancement over 
local patches is a crucial issue. The Retinex theorem [5] 
suggests suppressing the bias of illumination in order to 
enhance local contrast [6-8]. For low illumination or dark 
regions, these Retinex-based methods are able to improve 
results. However, the output contrast is typically weak when 

dealing with bright regions. Moreover, the enhanced results 
usually have halo effects and look unnatural. On the other hand, 
transform-based methods apply transformations (such as DCT-
discrete cosine transform or wavelet transform) to an image. 
The coefficients in a transform domain are then modified in 
accordance with the enhancement algorithms. Finally, the final 
enhanced image is obtained by an inverse transform. Although 
transform-based methods are able to accomplish global and 
local contrast enhancement, we may find halo effects in the 
output images. To reduce halo effects, some edge-preserving 
methods such as bilateral filtering [11] have recently been 
integrated with the transform-based methods. 

For better understanding, we will summarize some relative 
and representative enhancement methods. Gamma correction 
[1], S-curve correction [12], and histogram equalization [1] are 
well-used global tone mapping methods. By manually selecting 
the gamma parameter of the global mapping function, gamma 
correction methods can stretch image contrast in ether dark 
regions or bright regions. The idea behind S-curve correction 
methods is similar to gamma correction. However, S-curve 
correction methods provide more parameters for manual tuning 
and thus allow a system to use an S-shaped global mapping 
function for enhancing both dark and bright regions at the same 
time. On the other hand, histogram equalization (HE) [1] and 
multi-scale HE [13] aim to automatically determine the global 
mapping function by maximizing the histogram entropy of the 
enhanced image. HE-based methods are efficient but they tend 
to overly enhance an image and give unnatural artifacts when 
the histogram distribution has peaks. Finally, these global tone 
mapping methods cannot adaptively enhance local image 
regions. 

To improve local contrast, 2D-histogram-based mapping 
approaches [14-16] which introduce contexture information 
from the neighboring patches have been recently proposed. The 
key idea behind them is that the increase in the gray-level 
difference between a pixel and its neighbors could directly 
expand image local contrast. Accordingly, in [14], the author 
created a 2D histogram to record the occurrence of gray-level 
pairs within a small region. A mapping function could be 
established to equalize the 2D histogram in a way that makes 
the difference in intensity of neighboring pixel pairs uniformly 
distributed. Contextual and variational contrast enhancement 
algorithm (CVC) [15] is an improved version of [14]. As well 
as requiring the target histogram to be uniform, in CVC, a 
differential term was introduced to make the target histogram 
smooth. The final mapping function can be obtained by 
mapping the diagonal components of the original 2D histogram 
of the input image to the diagonal components of the 2D target 
histogram. In [16], a more complicated objective function was 
proposed to estimate the target histogram. Besides the uniform 
distribution constraint and smoothness constraints, higher order 
image factors have been simultaneously considered. These 
modifications may generate more satisfying results. However, 
the computation cost is high. 

On the other hand, a hybrid strategy combining global 
mapping and transform-based enhancement was proposed in 
[17-18]. In [17], a spatial entropy-based contrast enhancement 
algorithm in DCT (SECEDCT) was introduced. The spatial 
entropy of different gray-level intensities over an image was 
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defined and calculated. With the spatial entropy function, the 
global contrast enhancement function that maps the input 
intensity to an output value was then determined. Furthermore, 
to achieve local contrast enhancement, 2D-DCT was used to 
transfer the global enhanced image into the frequency domain. 
By appropriately weighting the high-frequency components, a 
globally and locally enhanced result can be obtained by an 
inverse transform of DCT. Although SECEDCT can enhance 
image contrast, the algorithm does not allow the system to 
control the level of global contrast and cannot preserve image 
brightness. To address these issues, the authors have recently 
proposed a modified version [18].  

Retinex-based methods are other alternatives for image 
sharpening and dynamic range compression. Single-Scale 
Retinex (SSR) [8] enhances image contrast by calculating the 
intensity ratio between a pixel and its surroundings. However, 
to get a better result, it requires a trial-and-error process to 
select the filter scale. Furthermore, to balance dynamic 
compression and image rendering, Multi-Scale Retinex (MSR) 
[9] was proposed to fuse many SSR-enhanced results generated 
under different filter scales.  

Retinex-based methods and transform-based methods are 
related. Both methods decompose an input image into base 
layers (low-frequency components) and detail layers (high-
frequency components). By attenuating the base layers or 
boosting the detail layers, the image details can be identified. 
Different decomposition strategies have been found in the 
literature. The authors in [19-20] enhanced an image using one 
base layer and one detail layer, whereas multiple base and 
detail layers were considered for enhancement in [21-24]. In 
particular, linear functions were used to compress the base 
layers [21-22] in the original intensity domain. Instead, [23-24] 
compressed the dynamic range by nonlinear functions in the 
feature domain.  

Recently, some ensemble frameworks have been proposed 
to improve the quality of an image. Instead of enhancing an 
image by means of a unified parameter setting, an ensemble-
based method attempts to generate many improved versions in 
which some image parts show a higher perceptual quality than 
the original input. These generated images are then seamlessly 
combined to produce the final enhanced result. In [25], the 
authors used LLSURE filters to generate images with less 
noise. The final de-noised result was realized through average 
fusion. In order to render an HDR image and achieve HDR 
compression, the authors in [26-27] proposed methods to 
synthesize many exposure images. However, without proper 
modifications, a weighted combination result may lead to 
intensity inconsistency between neighboring pixels. To avoid 
the inconsistency, multi-resolution blending methods based on 
a Laplacian pyramid [28-30] can be adopted to preserve the 
image contrast and ensure local intensity consistency. Although 
ensemble-based methods have achieved success for HDR 
image compression, few ensemble-based methods have been 
proposed for single image contrast enhancement, especially for 
X-ray images.  

III. IMAGE CONTRAST ENHANCEMENT MODEL 

 An image contrast enhancement model is proposed via 
component attenuation. We assumed that an X-ray image could 

be composed of removable and detail components. Here, the 
removable components refer to some amounts of body tissue. 
In contrast, the detail components consist of the portions of 
interest like bones and organs. In order to enhance an X-ray 
image, we attenuate the removable components so that we can 
extend the dynamic range to represent the detail components. 
To realize the concept, our image model is defined as: 

��(�)= � (�) ����⁄ = � (�)+ �(�),  (1) 

where ��(�) is a normalization image, �(�) is the input X-ray 
image, ����  is the maximum value of the whole image, � (�) is 
the detail component, and �(�) is the removable part. Also, x 
is a spatial index, ��(�), � (�), and �(�) are all between 0 and 
1. To achieve the final enhanced X-ray Image E(x), a contrast 
enhancement function ��(∙) is applied to the detail component 
� (�). That is: 

�(�)= ���� (�)� = �����(�)− �(�)�.  (2) 

After removing �(�) from ��(�), as shown in Fig. 2, it is 
expected that we have free space to enhance � (�) by enlarging 
its dynamic range. If we can design the enhancement function 
��(∙) to utilize the free dynamic range, image enhancement 
becomes possible. 

  
(a)	�(�)=0 (b) �(�)=1 

Fig. 2: (a) The concept of our enhancement method for �(�)=0, same setting 
in [10]; (b) The concept of the proposed method for	�(�)=1. DR means 
“Dynamic Range”. Please also refer the main text for the notations. 
 

In our system, the designed enhancement function ��(∙) is 

�(�)= ���� (�)� =
�� (�)� �(�)

��
��� (�)�(�)� �(�)

. (3) 

Here, ��
��� (�) = ���

�∈��
�(�) is the local maximum of the local 

region, ��, around the image pixel x, and �(�) is a controllable 
parameter. The derivation of �(�) is explained in Section IV. 
Ideally,�(�) helps to flexibly adjust the reference level in our 
enhancement model. To bind the range of �(�) , we decided to 
introduce �(�) in the exponential term. While we set �(�)=0, 
as shown in Fig. 2(a), our model degenerates into the early 
method proposed in [10]. If �(�) =1, the model �(�) degrades 
to refer to the local maximum ��

��� (�). As shown in Fig 2(b), 
the dynamic range of �(�) in this case is evidently enlarged 
when compared with the dynamic range in Fig 2(a). 

 The proposed model not only makes the enhanced image 
more brilliant but also makes the contrast stronger. As Fig 2(b) 
reveals, for a location �, the intensity value of our enhanced 
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result �(�) can be larger than ��(�); thus, the enhanced image 
can be more brilliant. Moreover, since the maximum value of 
�(�)  is not limited by ��(�) , the dynamic range of the 
enhanced image can be broadened. In addition, by referring to 
the local maximum ��

��� (�) , the proposed method can 
strengthen the contrast in both dark and bright regions. The 
property can be further explained by understanding equation 
(3). In particular, the contrast stretch is controlled by 

1 ���
��� (�)�(�) − �(�)�� . For a dark region, the denominator, 

��
��� (�)�(�) − �(�), is also small. Hence, the contrast can be 

stretched. For a bright region, ��
� �� (�)≈ 1, and therefore the 

enhancement of �(�) is similar to the result produced by [10], 
which has shown its ability to well enhance bright regions.   

 So far, we have explained the key idea of using component 
attenuation for contrast enhancement. In the next section, we 
will introduce the complete formulation for enhancement 
where we systematically parametrize the proposed contrast 
adjustment model, deduce the attenuation component �(�), 
and determine the term �(�). 

IV. PARAMETRIC CONTRAST ADJUSTMENT 

The attenuation component �(�) in equation (1) plays a 
key role in our contrast enhancement model. Suppose that the 
maximum removable tissue component map for image contrast 
enhancement can be determined and denoted as T(x). We could 
set R(x)=T(x) to remove as much tissue as possible and greatly 
stretch the image contrast in order to get a highly enhanced 
result. However, the tissue could be muscle or fat. Organs are 
also made of body tissue. If removing too much tissue for 
contrast stretching, we may also lose useful contents. Thus, in 
our system, we only attenuated partial components. 

In our method, to determine the attenuation component R(x), 
we introduced an attenuation factor, �, and defined �(�)≡ � ∙
�(�) to control the ratio for component removal. By estimating 
the maximum removable tissue component map �(�)  and 
controlling �, we can determine �(�) so as to enhance an X-
ray image properly. Since the contrast enhancement level is 
highly relevant to the amount of removed tissue, � becomes the 
main parameter of our parametric contrast adjustment model. 
We also treat � as a global parameter in our parametric model 
since the setting of � is invariant to pixel locations. To be clear, 
in Section VI.A, we will discuss the selection of the attenuation 
factor. Furthermore, we analyze more insights of component 
attenuation for contrast adjustment in Appendix B. 

The second controllable term in our model is �(�) which is 
defined in equation (3). By introducing λ(x), our model can be 
adjusted to satisfy preferred image constraints. Unlike	�, �(�) 
changes locally. In our system, we locally adjust the value of 
�(�) at different locations in order to keep the brightness 
consistent. Below, we illustrate the determination of T(x) and 
the calculation of the term �(�).  

A. The Maximum Removable Tissue Component Map, T(x) 

Without extra information, the decomposition of T(x) from 
an X-ray image is a difficult problem to solve. To estimate 
T(x), we introduced a constraint which is named “Local 
Contrast Maximization”. If we set R(x)=T(x), that is � = 1, to 

stretch the local contrast, an extremely high contrast result 
would be produced. To explain the idea, the stretching results 
under R(x)=T(x) and R(x)=� ∙T(x) are given in Fig. 3(a) and 
Fig. 3(b) separately. When R(x)=T(x), the dynamic range is 
obviously maximized. To further verify the assumption, some 
enhanced images for different � values are provided in Fig. 5. 
When � = 1 , the image is apparently over-enhanced if 
compared with other enhanced results.  

 

  
(a) (b) 

Fig. 3. The stretching diagrams of the dynamic range when: (a) removing the 
maximum removable component R(x)=T(x); and (b) properly attenuating the 
amount of removable tissues R(x)=� × �(�). λ(x)=1 for the two cases. 

 
Based on the “Local Contrast Maximization” constraint, 

the map T(x) could be determined by finding the optimal 
removable component map which maximizes the summation 
of local contrast over the final enhanced image �. Accordingly, 
to determine T(x), we defined and solved the corresponding 
optimization problem. The derivation detail is illustrated in 
Appendix C which shows the map T could be approximated 
well by equation (4).  

�(�)≅ ���
�∈��

��(�)≜ ��
��� (�).  (4) 

In (4), �� represents the local region around the pixel �, and y 
is a pixel inside ��. Thus, the component map T(x) at pixel x 
can be estimated by finding the local minimum within a local 
region around x. In our implementation, considering system 
efficiency, we used a 7x7 window to approximate the local 
image region. 

B. Contrast Enhancement with Brightness Consistency  

It can be shown that the attenuation factor � allows us to 
globally control the contrast enhancement ratio between a 
normalized image ��(�) and its enhanced result �(�). That is 
�����(�)�

������ (�)�
=

�

�� �
, whose derivation details can be found in 

Appendix B. The equation tells that the contrast enhancement 

ratio is fixed to 
�

�� �
 for all image pixels. Thus, the � value is 

treated as a global parameter in our method. In the equation, 
the LCR(∙) function calculates a local patch contrast ratio (LCR) 
which is also known as Weber local contrast [31].  

However, the contrast enhancement ratio is not the only 
factor that influences image enhancement. An example is 
shown in Fig. 4. Fig. 4(a) shows the original image. Fig. 4(b) 
and 4(c) are the results based on the proposed enhancement 
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model. The � values used for Fig. 4(b) and 4(c) are equal, but 
the settings of �(�) are different. In Fig. 4(b), �(�) is 0, 
whereas �(�) is 0.7 for Fig. 4(c). Due to having the same � 
value, the enhancement ratios of the two enhanced images 
should be equal. However, Fig. 4(b) and 4(c) show apparent 
differences in brightness. From equation (3), we see the 
difference comes from the scaling term ��

��� (�)�(�) − �(�). 
Thus, by altering the scaling term, we can adjust image local 
properties and also keep enhancement ratio same. Specifically, 
the parameter �(�) provides our model with the flexibility to 
control local image brightness.  

 

(a) 

 

(b) 

  
� = 0.2 and �(�)= 0 � = 0.8 and �(�)= 0 

(c) 

  
� = 0.2 and �(�)= 0.7 � = 0.8 and �(�)= 0.7 

(d) 

  
� = 0.2 and �(�) = �∗(�) � = 0.8 and �(�)= �∗(�) 

Fig. 4: (a) The original images; (b) and (c) are the enhanced results under 
�(�)= 0 and �(�)= 0.7; (d) shows the enhanced results under �∗(�), which 
is determined by equation (6). 

However, without a correct setting of �(�), the result may 
not be good. Examples can be found in Fig. 4. For �(�) = 0, 
the enhanced images become darker, as shown in Fig. 4(b), 
whereas the enhanced images tend to be locally over-bright for 
�(�) = 0.7, as shown in Fig. 4(c). Thus, we still need to find a 
suitable setting of �(�) to keep the consistency of image local 
brightness. In our system, we then require the maximum image 
value in a local area �� to be kept at the same level after image 
enhancement. Thus, the brightness property can be maintained 
locally. This leads to our brightness consistency constraint 
being defined as follows: 

��
��� (�)≜ ���

�∈��
�(�) = ��

��� (�)≜ ���
�∈��

��(�).  (5) 

Now, given a global attenuation ratio � and the brightness 
constraint described in (5), the selected parameter �∗(�) at 
pixel � can be determined by equation (6): 

 �∗(�) = ��� �1 − ���
��� (�)�

�

��
��� (�)

− 1�� ���� ���
��� (�)�.(6)     

To derive equation (6), we have replaced ��
��� (�) in equation 

(5) by the equation (A.3) in Appendix B. Since the interval of 
� is [0,1], it can be proved by equation (6) that the interval of  
�∗ is also [0,1]. In some cases, the brightness of the original X-
ray image is globally compressed and therefore the brightness 
consistency becomes impractical. To solve the problem, a 
preprocessing step based on histogram equalization was 
introduced into our processing phase to globally stretch image 
histogram before applying the proposed main method. 

V. THE ENSEMBLE FRAMEWORK FOR IMAGE 

ENHANCEMENT 

 So far, given an attenuation ratio �, we are able to generate 
an enhanced image by equation (3). Note that parameter �(�) 
can be calculated using equation (6) and the attenuation 
component map �(�) is determined by �(�)≡ � ∙�(�). For 
reference, some enhanced images under different settings of � 
are provided in Fig. 5. As Fig. 5 shows, the enhanced level is 
increased when we adjust � from 0 to 1. This also matches the 
conclusion in Appendix B that �  allows us to control the 
enhancement ratio. 

 In addition, the selection of the attenuation ratio should be 
further discussed. When we attenuate tissue components, as 
shown in Fig. 5, the dynamic contrast of the image details is 
stretched. However, at the same time, some information in the 
enhanced image is missing, especially the low-frequency 
components. Therefore, it would be challenging to generate a 
satisfactory enhancement by selecting an optimal attenuation 
ratio to produce the final result. Instead, we proposed an image 
ensemble framework that not only offers a solution to produce 
a pleasing result by integrating many enhanced images but also 
keep our system efficient.   

The proposed ensemble framework is presented in Fig. 6. 
For an input normalized image In(x), we estimate the tissue 
component using equation (4), select K attenuation ratios 
{��}���	� in the interval [0,1], and generate K enhanced images 
{��(�)}���	�. To achieve the final output image, we combine 
the K enhanced images based on local image quality. For 
efficiency, we borrowed the idea from Exposure Fusion (EF) 
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[32]. That is, given K enhanced images {��(�)}���	� , our 
system generates the combined image �(�) by 

  
Original image: � = 0 � = 0.7 

  
� = 0.3 � = 0.9 

  
� = 0.5 � = 1 

Fig. 5. One testing image and its enhanced images under different settings of �. 
The corresponding parameter �∗(�) was determined by equation (6). 

 

�(�)= ��({��(�),��(�)}���	�).   (7) 

In (7), EF(.) represents the Exposure Fusion algorithm. ��(�) 
is the weight map for the ith enhanced image. � represents a 
pixel’s location. Also, the summation of weights at one pixel 
over K images is required to be equal to 1. To determine the 
weight maps {��(�)}���	� , we evaluated the image quality 
around each pixel in each individual image. The evaluation is 
based on two quality metrics: (a) contrast level; and (b) 
brightness preservation. The contrast level ��(�)  of the ith 
enhanced image �� at pixel � is measured by: 

 

Fig. 6. The proposed ensemble framework for contrast enhancement 

 

��(�) =
|∆��(�)|

��(�)���������
=

|��(�)∗��|

��(�)∗����
 , (8) 

where the operator “*” indicates image convolution. ��  is a 
standard 5x5 Laplacian filter that helps to calculate the second 
order difference between a pixel and its neighbors; �� is a 5x5 
Gaussian filter that helps to calculate the weighted average 
intensity around pixel � . ∆��(�) and ��(�)�������  are convoluted 
images by �� and �� correspondently. An absolute operator is 
added in (8) to make sure ��(�) is positive; we also add a small 
value �  in the denominator to avoid the division-by-zero 
problem when a pixel of the convoluted image��(�)∗ �� 
approaches 0. In general, we would assign a high weight to a 
high contrast pixel. 

 In addition, we hoped that the fusion result �(�) preserves 
the local maximum brightness, like the brightness consistency 
constraint we used in equation (5). Hence, we introduced a 
brightness preservation metric ���(�), defined in equation (9), 
to control the fusion weight at pixel � in the ith enhanced image. 

���(�) = ���	�− �
��(�)

�
�
�
�.                                      (9)  
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Here, ��(�) = ���
�∈��

��(�)− ���
�∈��

��(�)  represents the local 

maximum difference between the ith enhanced image ��(�) and 
the original image ��(�). � is the standard deviation of local 
maximum differences. In (9), a small ��(�) means that the 
local maximum brightness can be preserved and therefore the 
corresponding ���(�)  value is high. Otherwise, the ���(�) 
value would be low.  

 Finally, by combining ��(�) and  ���(�), we determine the 
fusion weight ��(�) at pixel � in the ith enhanced image as:  

��(�)= ��(�)× ���(�).     (10)  

Later on, we input ��(�) and ��(�) into the Exposure Fusion 
algorithm [32] to produce the final fusion result. Here, the EF 
algorithm is able to seamlessly blend many enhanced images 
{��

�(�)} according to their weight maps {��(�)} via pyramid 
decomposition. To summarize, we clarify the implementation 
steps of our ensemble framework for X-ray enhancement in 
Algorithm 1. Some fusion results are given in Fig. 7. Based on 
the ensemble framework, the local image contrast is well 
presented and the image details are well preserved.  

Algorithm 1: Ensemble Enhancement Procedure 

Input: Original image (I), number of generated images (K).   
Output: Final fusion result �(�)  
Algorithm 
0: Pre-process: Apply histogram equalization to I 
1: Compute the normalized image (In) by equation (1) 
2: Estimate tissue component �(�)≈ ��

��� (�) 
3: Select K attenuation factors {��}���	� 
4: For each �� 
5:  Compute attenuation component ��(x) based on ��(�)≡

�� ∙�(�).  
6:    Compute the parameter ��

∗(�) based on equation (6). 
7:    Generate an enhanced image ��(�) using equation (3). 
8:  Compute contrast level ��(�) and brightness preservation 

metric ���(�)  to estimate the fusion weight ��(�) 
according to equations (9) and (10) 

9: End 
10: To produce the fusion result �(�),  fuse K enhanced 
images {��

�(�)}���	�  according to their weight maps 
{��(�)}���	� via the Exposure Fusion algorithm [32].  
 

  
VI.  EXPERIMENTAL RESULTS AND DISCUSSIONS 

To subjectively evaluate the proposed system, we built an 
online testing system [33] and invited some radiologists and 
doctors to test our system. The user feedback can be found in 
[34]. Furthermore, we created a google survey form [35] to 
subjectively evaluate that whether the enhanced results of the 
proposed method are better than those of other methods. From 
these subject surveys, we can find the proposed method gains 
the most positive feedbacks.  

On the other hand, for objective evaluation, we used 
discrete entropy (DE) [36], absolute mean brightness error 
(AMBE) [37], measurement of enhancement (EME) [38], and 
Tenengrad criterion (TEN) [39] for image quality measurement. 
The four metrics measure image quality according to different 

properties. DE is used to measure the information level of an 
image. A larger DE score means more image information can 
be kept. To measure the ability to preserve image brightness, 
we used the AMBE metric. A smaller AMBE means that the 
method preserves brightness better than a method with a higher 
value. In addition, EME measures the enhancement level of an 
enhanced image. A higher EME implies better enhancement. 
For measuring sharpness, we used TEN. The criterion is based 
on gradient magnitude to evaluate image quality. A higher 
TEN value indicates that the image is sharper.  

Two different datasets were utilized for system analysis, 
testing, and comparison. The first dataset was provided by a 
local hospital. There are 70 X-ray images in this dataset [33]. 
The other dataset is the Japanese Society of Radiological 
Technology (JSRT) dataset [40], which includes many chest X-
ray images with tiny nodules around the lung area. We will 
analyze the experimental results of the proposed method in 
Section VI.A. The comparisons are presented in Section VI.B. 
Besides image enhancement, by using the JSRT dataset, we 
hope to show our system assists doctors in nodule inspection. 
The results, in Section VI.C., demonstrate that our system 
makes nodules recognizable in the low contrast regions. 

   

   

Fig.7. X-ray image enhancement based on the proposed method. The first row 
contains the original images; the second row shows the results.  

A. Discussion of the Proposed System 

In order to evaluate the effectiveness and robustness of the 
proposed method, we tested our system using many medical 
X-ray images. Some test images and enhanced results are 
shown in Fig. 7. As shown in Fig. 7, the original images are 
over bright, low contrast, and it’s hard to see the details. Even 
so, by attenuating tissue components and applying our 
ensemble algorithm, we are able to strengthen the image 
contrast and reveal the details. Moreover, the proposed 
enhancement model involves pixel-wise computing only. 
Therefore, our system can be implemented in an efficient way. 
Currently, our algorithm is implemented on a PC with an Intel 
Core i5 3.0 GHz CPU and 4GB of memory. It takes about 0.2 
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seconds to process a standard X-ray image with an image 
resolution of 640 x 520. 

In our system, some parameters should be set. Based on 
our analysis, we finally chose the following setting as default 
for most of our experiments and produce acceptable results. 

(a) The attenuation ratio set is {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. 
(b) The window size is 7x7. 
(c) 6 enhanced images are used for fusion.     

However, to understand the proposed system in depth, it is 
worthwhile to know the effects of the parameter setting from 
three aspects: (1) the effect of attenuation ratios, (2) the effect 
of the neighborhood size, and (3) the number of enhanced 
images for result fusion. Below, we discuss the details. 
1) The Effect of Attenuation Ratios  

The selection of attenuation ratios for fusion is a key issue 
that needs to be discussed further. In the experiment, to 
understand the influence of different combinations of enhanced 
images, three attenuation ratio sets, as defined in Fig. 8, are 
tested. Each ratio set has 6 elements implying there are 6 
enhanced images used for fusion. These ratio sets are selected 
in a uniform manner or in an exponential manner. One test 
example under these ratio sets is presented in Fig. 8. Also, we 
compare the fusion results under the three ratio sets by 
inspecting DE, AMBE, EME, and TEN. Both Table I and Fig. 
8 show that the fusion results are not sensitive to the ratio sets. 
It may be because the proposed ensemble framework is able to 
automatically balance the strengths and the weaknesses among 
many enhanced images.  

TABLE I.  ENHANCEMENT COMPARISON UNDER DIFFERENT ATTENUATION 

RATIO SETS. THE METRICS ARE DISCRETE ENTROPY (DE), ABSOLUTE MEAN 

BRIGHTNESS ERROR (AMBE), MEASUREMENT OF ENHANCEMENT (EME), AND 

TENENGRAD CRITERION (TEN). SEE THE MAIN TEXTS FOR MORE DETAILS. 

Ratio Set DE  AMBE EME TEN 

1st ratio set 7.7522 0.1006 19.5302 0.4671 

2nd ratio set 7.7385 0.0874 18.7089 0.4492 

3rd ratio set 7.7653 0.1148 20.4950 0.4872 

Optimal ratio set 7.8257 0.1236 21.0731 0.4784  
 

   

(a) 1st ratio set {0.5, 0.6, 

0.7, 0.8, 0.9, 1} 

(b) 2nd ratio set {0.5, 

0.58,0.63,0.74, 0.82,1} 

(c) 3rd ratio set {0.5, 0.67, 

0.79, 0.87, 0.92, 1} 

Fig. 8. Final fusion images under different attenuation ratio sets. 

We also try to automatically determine the optimal ratio set. 
In this experiment, we applied Particle Swarm Optimization 
(PSO) framework [41] to find the optimal ratio set. The 
objective function is to maximize the summation of the DE 
value, the EME value, the TEN value, and the negative AMBE 
value. Note that these metrics have different intensity ranges 

and should be normalized before evaluation. For the test 
sample in Fig. 8, 1000 particles are used and the found optimal 
ratio set is {0.69, 0.79, 0.89, 0.92, 0.95, 0.98}. The 
corresponding metric values are also listed in Table I for 
comparison. Although the result could be slightly improved, 
the optimization process is highly costly. In practical, we may 
directly use the default ratio set to generate acceptable results 
without optimization.    

2) The Effect of the Neighborhood Size  
The window size used in our system is another factor we 

need to analyze. To understand the details, an experiment is 
performed to enhance images under different window sizes. 
The corresponding final results are presented in Fig. 9. As the 
patch size increases, we find the sharpness is gradually reduced. 
Even so, the image brightness could be better preserved by 
using a larger size. To quantitatively analysis, we also calculate 
the four metrics DE, AMBE, EME, and TEN under different 
window sizes. Their values are presented in Table II. Here, the 
DE values under different sizes are roughly same; it means the 
proposed method is less sensitive to window sizes in terms of 
keeping image information level. In addition, the AMBE 
metric shows that a large size could well preserve image 
brightness. However, the table also reveals that a larger 
window size leads to lower enhance levels (EME) and image 
sharpness (TEN). To find a compromise between brightness 
and sharpness, we finally select 7x7 as our default window size. 

   

Patch Size=5x5 Patch Size=7x7 Patch Size=9x9 

   

Patch Size=11x11 Patch Size=13x13 Patch Size=15x15 

Fig. 9. Comparison of final fusion images using different window sizes. 

TABLE II.  PERFORMANCE UNDER DIFFERENT WINDOW SIZES. THE METRICS 

ARE DISCRETE ENTROPY (DE), ABSOLUTE MEAN BRIGHTNESS ERROR (AMBE), 
MEASUREMENT OF ENHANCEMENT (EME), AND TENENGRAD CRITERION 

(TEN). 

Window Size DE  AMBE EME TEN 

5x5 7.7186 0.1164 20.442 0.5329 

7x7 7.7522 0.1007 19.5303 0.4672 

9x9 7.7780 0.0911 18.6802 0.408 

11x11 7.7974 0.0841 17.8483 0.3638 

13x13 7.8147 0.0786 16.8502 0.3284 

15x15 7.8285 0.0748 16.0329 0.3006 
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3) The Number of Enhanced Images for Fusion  
Additionally, the number of enhanced images utilized for 

fusion should be analyzed. In our experiment, we compared the 
fusion results based on 4, 6, 8, 10, and 12 enhanced images. 
The distributions of TEN and DE over different numbers of 
images are shown in Fig. 10. The DE distribution shows that 
the information level of the final result tends to be saturated 
when using 6 or more images. On the other hand, the TEN 
distribution indicates that the sharpness of the fused image is 
gradually reduced as the number of image increases. To be 
compromised and efficient, we choose 6 images as a trade-off 
setting to implement our system.  

 

 
Fig. 10. The distributions of the TEN (Tenengrad criterion) and DE (discrete 
entropy) metrics over different numbers of enhanced images for fusion.  

B. Comparison of Contrast Enhancement 

1) Compare with our Previous Work  
We compare the proposed method with our previous work 

[10] to show the improvement. Both models enhance images 
using the concept of component attenuation. However, based 
on the previous work [10] for enhancement, the brightness of 
the final result would decrease. In contrast, the newly proposed 
model can make the enhanced details more brilliant and the 
contrast stronger. We can check Fig. 11 and compare the 
difference between the two models. Overall, both models give 
better visualization for X-ray inspection. However, the image 
brightness of our new model is higher. Furthermore, the 
proposed ensemble framework with the new parametric model 
provides clearer image details and a more uniform contrast 
enhancement. 

As an aside, our previous model in [10] is designed 
specifically for the bright regions, but the dark regions are less 

enhanced. As our expectation, the details of the dark region in 
Fig. 11(b) are not as distinct as the ones in Fig. 11(c). In 
contrast, because the new model refers to the local maximum 
of an image region to adjust contrast, the result gives a better 
enhancement. Like Fig. 11(c), both dark and bright regions are 
well presented. If we quantitatively assess the two models, the 
mean ME value and the mean TEN value of the new proposed 
method over our first dataset are 20.5 and 0.59 respectively; in 
contrast, the mean ME and TEN produced by [10] are 11.06 
and 0.18 respectively.  

   

   

(a) Original Image (b) Results of [10] (c) Our Results  

Fig. 11. A comparison of two contrast enhancement models. (a) The original 
images. (b) The results outputted by our previous model [10]. (c) The results 
produced by our method. Both models enhance images using the concept of 
component attenuation.  

2) Compare with Other Relative Works  
Two global contrast adjustment methods, gamma correction 

(GC) and histogram equalization (HE), were compared with 
our method. Meanwhile, eight state-of-the-art enhancement 
methods were also used for quality comparison. They are: 
spatial entropy-based global and local contrast enhancement 
(SEGL) [17], 2D histogram equalization (2D_hist) [16], 
histogram-based locality-preserving (HBLP) [2], adaptive 
gamma correction (AGC) [4], bilateral filter (BF) [20], local 
and SURE-based edge-preserving (LL-SURE) method [25], 
luminance and contrast masking (LCM) [24], and tissue 
attenuation (TA) [10] In total, 10 algorithms were considered 
for performance comparison. 

We applied the 11 algorithms to the 70 images provided in 
the local hospital dataset [33] and produced the enhanced X-
ray images. The aforementioned 4 performance metrics were 
calculated for each enhanced image. Next, the mean values of 
the metrics over the 70 images were compared (see Table III). 
According to the results in Table III, the proposed method 
achieves better results than most of the other methods. 

To analyze the performance of these methods, we will 
discuss three aspects: enhancement quality, information level, 
and brightness preservation. To evaluate the quality of the 
enhancements, EME and TEN were used. As indicated in 
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Table III, the EME and TEN values of our method were 20.55 
and 0.59 respectively. They are also the highest values of all 
the methods. In addition, in Fig. 12, we show the distributions 
of the EME value over 70 enhanced images produced by BF 
[20], LLSURE [25], TA [10], and the proposed method. The 
distributions show that our system can enhance images better 
than the other three methods. 

TABLE III.  COMPARISON WITH OTHER RELATIVE WORKS. THE METRICS ARE 

DISCRETE ENTROPY (DE), ABSOLUTE MEAN BRIGHTNESS ERROR (AMBE), 
MEASUREMENT OF ENHANCEMENT (EME), AND TENENGRAD CRITERION 

(TEN).  

Evaluation Metrics DE  AMBE EME TEN 
HE [1]  5.910145 0.17537 6.986534 0.087381 

2D_hist [16]  6.09907 0.347427 9.469749 0.083417 

SEGL [17]  7.200908 0.147956 6.636575 0.093428 

HBLP [2]  6.879979 0.128545 6.969456 0.097866 

GC [1]  7.52045 0.225797 11.06617 0.086737 

AGC [4]  7.064793 0.174661 8.673812 0.097297 

BF [20]  7.398008 0.000878 9.494262 0.138034 

LL-SURE [25]  7.373331 0.00175 15.63878 0.38723 

LCM [24]  7.375754 0.00135 7.803425 0.129104 

TA [10]  7.448939 0.256015 11.06683 0.179773 

Proposed method  7.633109 0.186175 20.55086 0.593348 

  

 

Fig. 12. The distribution of EME (measurement of enhancement) over 70 
enhanced images produced by BF [20], LLSURE [25], TA [10], and our 
method. The X-axis is the image index; the y-axis is the EME metric value. 
Better viewed in color. 

Histogram entropy is a common indicator usually used to 
measure the information level of an enhanced image. To know 
the information level of the enhanced images, we adopted the 
DE metric. In Table III, the DE values produced by the 11 
methods are all high. This means that these methods can all 
utilize the image dynamic range well. It also means that the 
image intensities are widely distributed. Note that the DE value 
of the proposed method is 7.63, which is the highest of the 11 
methods. 

The final metric is AMBE. This measures the system’s 
ability to preserve brightness. It should be noted that there is 
always a tradeoff between contrast enhancement and brightness 
preservation. To preserve brightness, a trivial solution is to 
keep the original image without modification. Obviously, this 
violates the basic objective of image enhancement. Therefore, 
our system treats brightness preservation as a soft constraint 
rather than the major goal. In Table III, the AMBE values of 
the three methods, BF [20], LLSURE [25], and LCM [24] are 
small. We could expect that the three methods would preserve 
brightness better than the rests. Accordingly, as given in Fig. 
13(h) to Fig. 13(j), the enhanced results of the three methods 
has brightness similar to the original image. However, the 
details of these enhanced results are not distinct for X-ray 
inspection, especially in the bright regions. In contrast, our 
method enhances both the bright and dark regions with a fair 
AMBE value of 0.186. 

As well as quantitative evaluation, we have provided the 
enhanced images output by the 11 methods (in Fig. 13) for 
visual comparison. First, we compared the difference between 
global adjustment methods and local adjustment methods. 
Without considering the local properties, the visualization of 
some local details produced by the global methods, such as Fig. 
13 (b), Fig. 13(c), and Fig. 13(d), is not much improved. 
Although the global contrast is boosted, the dark regions still 
lack contrast and the details are difficult to figure out. In this 
example, the original chest X-ray image is over-bright. In order 
to stretch the dynamic range, the global methods tend to map a 
bright pixel to a darker one. In return, the details in bright 
regions become recognizable by sacrificing the dark regions. 
Thus it is challenging to preserve the details in both bright and 
dark regions by using a global adjustment method. 

We then compared another 3 methods: HBLP [2], 2D_Hist 
[16], and AGC [4]. They claim to enhance image global 
contrast and preserve local properties. HBLP [1] and 2D_Hist 
[16] are the extensions of Histogram Equalization [1]; AGC [4] 
is a local adaptive version of gamma correction. Although 
these methods consider the local properties, the quality of the 
result is not satisfactory for inspection. By evaluating Fig. 13(e) 
to Fig. 13(g), we cannot easily see the detail in the over-dark 
and over-bright regions. This may be because these methods 
are designed to keep the physical contrast order globally. In 
other words, the brightness in a dark region should still be 
smaller than a bright region after image enhancement. This 
assumption may be necessary for natural-looking enhancement. 
However, for X-ray inspection, the clearness of the details is 
more important than visual pleasure. To see the image details, 
methods that locally adjust images would be a better selection. 
Two such examples are the TA method and our proposed 
system. As we can see in Fig. 13(k) and Fig. 13(l), they are 
able to show details.  

Some enhanced results produced by the transform-based 
methods of BF [20], LLSURE [25], and LCM [24] were also 
compared. These methods attempt to emphasize the high-
frequency components in order to reveal image details; 
meanwhile, they preserve the low-frequency components so 
that the image brightness is preserved. The corresponding 
results of these methods are shown in Fig. 12(h) to Fig. 12(j). 

 E
M

E
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Overall, these methods increase visibility in the dark regions. 
However, the embedded details in the bright regions are still 
foggy. Unlike these methods, our method is specifically 
designed for X-ray inspection. How to present the details well 
is our primary goal. According to the results in Fig. 7, Fig. 
11(c) and Fig. 13(l), we have demonstrated that our system 
can reveal the details of an X-ray image, not only in dark 
regions but also in bright regions. 

   

(a) Original Image (b) HE [1] (Global) (c) GC [1] (Global) 

   

(d) SEGL[17] (e) HBLP [2] (f) 2D_hist [16] 

   

(g) AGC [4] (h) BF [20] (i) LL-SURE [25] 

   

(j) LCM [24] (k) TA [10] (l) Proposed method 

Fig. 13. The comparison of the 11 enhancement methods 

C. Application for Disease Inspection 

Moreover, we hope to show our system is able to help 
doctors with disease inspection. Thus, we applied the proposed 
method to enhance the X-ray images in the JSRT dataset. In the 
dataset, some X-ray images have tiny nodules embedded in the 
chest area. Compared with the other X-ray dataset, the JSRT 

X-ray images are of lower resolution and lower contrast. In 
addition, due to the lower image quality, it is hard to recognize 
the locations of nodules without image enhancement.  

  
(a) Original Image (b) Proposed method 

  
(c) GC [1] (d) HBLP [2] 

  
(e) 2D_hist [16] (f) BF [20] 

  
(g) LL-SURE [25] (h) LCM [24] 

Fig. 14: The comparison of enhancement methods for nodule inspection   

 

Some JSRT X-ray images with and without enhancement 
are shown in Fig. 14. The known nodule locations are indicated 
by arrows. In the example, we cannot easily identify the 
nodules from the original X-ray image. After applying the 
proposed method to adjust the image contrast, Fig. 14(b) shows 
that the nodule regions become clearer. Even more, both the 
nodules and the bone structure are enhanced well. Moreover, 
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the JSRT X-ray images are over-bright. Fig. 14(a) shows that 
we cannot clearly see the image contents in the bright and dark 
regions. After applying the proposed method, our system 
increases the image details by attenuating tissue components. 
The ensemble framework also makes our image enhancement 
locally adaptive to different image regions. Thus, our result in 
Fig. 14(b) shows that we can discover many small but 
significant details. 

Besides, for comparison, we also include the results 
produced by the other 6 methods in Fig. 14. Similar to the 
discussion in Fig. 13, the proposed method can reveal more 
structural details in both the dark regions and bright regions if 
compared with the other methods. Furthermore, to manually 
inspect the nodules from an X-ray image, a simplified principle 
is to find the blobs with circle shapes in the chest region. Since 
the proposed method is able to locally and adaptively enhance 
the boundaries of objects, the nodule boundaries also become 
sharper in our enhanced results. While using the proposed 
method to help with X-ray inspection, the radiologists can 
check the original X-ray image and our enhanced result 
simultaneously. On the one side, if the radiologist identifies a 
possible nodule in the original image, our enhanced image can 
help to verify the hypothesis and can provide a clearer view for 
the measurement of the nodule size. On the other side, the 
enhanced image is able to show the details which are not clear 
in the original image. This helps to reduce the number of 
missing detection. Therefore, the proposed method has two 
advantages in terms of nodule detection. First, our method can 
reveal more image details and reduce missing detection. 
Second, the sharper object boundaries help to locate nodules 
and make the measurement of nodule sizes easier. 

In addition, to objectively compare nodule detection with 
and without the proposed enhancement method, we implement 
the nodule detection algorithm [42]. The method is chosen 
because it also uses JSRT dataset for experiments. The method 
is composed of three steps. First, the method extracts pixel-
wise features based on filter banks. Second, the extracted 
features are inputted into a well-trained pixel-wise classifier to 
generate a nodule-likeness map. Finally, given the likeness 
map, a multi-scale blob detection algorithm is used to identify 
nodules in the image. In Fig. 15, we show the nodule-likeness 
maps generated from the original X-ray image and the 
enhanced image for comparison. Also, we compare the nodule 
detection performance with and without image enhancement 
by using Free-Response Receiver Operating Characteristic 
(FROC) [43] curves. The 140 JSRT X-ray images are all used 
for evaluation. As shown in Fig. 16, we achieve higher 
sensitivity and lower false positives when the proposed 
method is applied. These experiments and comparisons show 
that our enhanced images are useful for disease diagnosis. 

VII. CONCLUSION 

The energy recorded in an X-ray image is able to reveal the 
internal condition of a human body. Thus, X-ray imaging has 
become a standard tool for health inspection. However, the low 
contrast property of an X-ray image makes it hard to recognize 
tiny and abnormal details. In this paper, a new enhancement 
system based on component attenuation, contrast adjustment, 

and image fusion was proposed. By attenuating the tissues over 
the image, we can enhance the essential details in both the 
bright and dark regions adaptively. Established in this concept, 
a novel parametric adjustment model was formulated. The 
model enables users to easily enhance image contrast by 
adjusting the attenuation scale. To locally enhance the contrast, 
an ensemble strategy was also proposed to fuse many enhanced 
images and generate the final output by maximizing the visual 
contrast. We have used four measurement metrics and two 
datasets to evaluate our system. The results demonstrated the 
effectiveness of our method to enhance organs, bone structure, 
and some small but significant details, such as tiny nodules in 
low contrast X-ray images. Moreover, an online testing system 
was also built for subjective evaluation. It showed that our 
system can help doctors with disease inspection.  

  
Fig.15: The nodule-likeness maps generated from (a) the original image and 
(b) our enhanced image. The test image is same with Fig. 14. The small 
arrows show the locations of nodules.  

 

 
Fig.16: The FROC curves of lung nodule detection with and without image 
enhancement. FP means false positives.  
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APPENDIX A: TABLE OF VARIABLE NOTATIONS  

Notation  Description 
��(�) Normalization image 
�(�) Input image 

��
��� (�) Local maximum of a normalized image around an 

image pixel x 

��
��� (�) Local minimum of a normalized image around an 

image pixel x 
� (�) Detail component at the xth pixel  
�(�) Removing component at xth pixel 
�(�) Tissue component at xth pixel 
�(�) Enhanced image at the xth pixel 

��
��� (�) Local minimum of an enhanced image around an 

image pixel x 
��
��� (�) Local maximum of an enhanced image around an 

image pixel x 
�(�) A local parameter to keep the brightness of a local 

region around pixel x 
� A global parameter to control the attenuation ratio 

��(�) The fusion weight for the ith image at pixel x 
��(�) Contrast level of the ith image at pixel x 
���(�) Brightness preserving of the ith image at pixel x 
��(�) Local maximum difference between the enhanced 

image ��(�) and the normalization image ��(�) 
�(�) The final fusion output 
���(. ) Local patch contrast ratio function 
���� The pixel-based contrast range at pixel x 

���(�) The optimal local contrast at pixel x 

APPENDIX B: INSIGHT INTO TISSUE ATTENUATION 

It is worth discussing the role of the attenuation factor � 
and its influences in the enhanced result �(�). For analysis, we 
introduced the concept of local patch contrast ratio (LCR) 
which is also known as Weber local contrast [31]. For a local 
patch of a normalized image ��(�) around a pixel �, the LCR is 
defined in equation (A.1). 

������(�)� ≜
��
��� (�)� ��

��� (�)

��
��� (�)

 .     (A.1) 

Note ��
��� (�)≜ ���

�∈��
��(�)  and ��

��� (�)≜ ���
�∈��

��(�); ��  is 

the local region around a pixel x. Following the same definition, 
we can calculate the LCR of the enhanced image �(�) by: 

�����(�)� =
��
� �� (�)� ��

��� (�)

��
��� (�)

 ,  (A.2) 

where ��
��� (�)  and ��

��� (�)  are the local maximum and 
minimum of a local region around a pixel x. By referring to 
equation (3) and equation (4), we can derive ��

��� (�) as: 

��
��� (�)≜ ���

�∈��
�(�) = ���

�∈��

�� (�)� �∙��
��� (�)

��
��� (�)�(�)� �∙��

��� (�)
≈

����
�∈��

�� (�)�� �∙��
��� (�)

��
��� (�)�(�)� �∙��

��� (�)
=

��
��� (�)� �∙��

��� (�)

��
��� (�)�(�)� �∙��

��� (�)
. (A.3) 

In the above derivation, we have assumed that the local 
maximum and minimum of different pixels in a small local 

region ��  is roughly fixed. That is, we assumed ��
��� (�)≈

��
��� (�) and ��

��� (�)≈ ��
��� (�) if � ∈ �� . Furthermore, as 

shown in equation (6), the setting of �∗(�) depends only on 
��
��� (�) and ��

��� (�). Thus, we have �(�)≈  �(�) for any 
pixel � ∈ ��. Similarly, based on these assumptions, ��

��� (�) 
is estimated by: 

��
��� (�)≜ ���

�∈��
�(�)≈

��
��� (�)� �∙��

��� (�)

��
��� (�)�(�)� �∙��

��� (�)
. (A.4) 

With the newly derived ��
��� (�) and ��

��� (�), the LCR of 
the enhanced image �(�) defined in equation (A.2) can be 
rewritten as: 

�����(�)� ≈
��
��� (�)� ��

��� (�)

��
��� (�)� �∙��

��� (�)
=

�

�� �
�
��
�� �(�)� ��

��� (�)

��
��� (�)

�   (A.5) 

Now, from equation (A.1) and (A.5), we define enhancement 
ratio as:  

      ��ℎ�������������(�)≜
�����(�)�

������ (�)�
=

�

�� �
.        (A.6) 

We find the attenuation factor � can be regarded as a global 
parameter to control the enhancement ratio between �(�) and 
��(�) in terms of LCR. Over all image pixels, the ratio is fixed 

to 
�

�� �
 once the � value is selected. When � increases from 0 

to 1, the ratio rises accordingly. 

APPENDIX C: THE DERIVATION OF TISSUE ESTIMATION 

In this appendix, we discuss how to estimate the maximum 
removable tissue component map �(�). We assumed that 
�(�) can be determined by finding the optimal removable 
component map, which maximizes the summation of local 
contrast over the final enhanced image �(�). In order to 
define the optimization problem, we introduced the pixel-
based contrast range (PCR) of �(�) at a pixel � as: 

���� ≜ �(�)− ���
�∈��

�(�),   (A.7) 

where �� represents the local region around the pixel �, and y 
is a pixel inside ��. Also, some constraints are introduced in 
order to find a feasible estimation of the map �(�). They 
include:  
(a) Range Constraint:  ��(�)≥ �(�)≥0 and �(�)∈ �  is a 

non-negative integer indicating the removable intensity at 
pixel �;  

(b) Smooth Neighborhood Constraint: ∑ ��(�)− �(�)�
�

�∈��
 

should be small; 
(c) Regularization Constraint: we prefer a larger �(�)�. Note 

that the larger removable component we have, the higher 
contrast enhancement we can achieve.  

Next, using equation (3), the map �(�) is then estimated by 
finding the removable component map �(�) that is subject to 
the three constraints and maximizes the summation of PCR of 
the enhanced image  �(�) over all image pixels. That is 

�(�)≜ ������ 	
�
∑ �

��(�)− ���
�∈��

�(�)�
�

+ ��[�(�)
�]

− �� �∑ ��(�)− �(�)�
�

�∈��
�

��     

subject to ��(�)≥ �(�)≥0 and �(�)∈ �. (A.8) 
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In (A.8), �(�) is a function of �(�); �� and �� are two tunable 
weights to control the importance of constraints. Since the 
optimal �(�) is highly related to its neighbors {�(�)}�∈��, the 
solution to the optimization problem is non-trivial. To solve the 
problem, we apply the Graph Cut algorithm. A 1D test signal 
and its optimization result are shown in Fig. 17. We may find 
the optimal solution is close to the distribution of local 
minimum. This gives us the intuition to approximate the map 
T(x) by simply finding the local minimum within a local region 
around x. That is �(�)≅ ���

�∈��
��(�).  

 
Fig. 17. A 1D test signal (blue) for the maximum removable component map 
estimation. The green distribution is the optimal solution with regularization. 
The orange distribution is the approximated solution using the local minimum 
within a window. 

  


